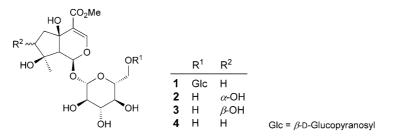
New Iridoid Glycosides from Lamium eriocephalum subsp. eriocephalum

by Funda Nuray Yalçın*a), Tayfun Ersöz^b), Kürşat Avcr⁽¹⁾, Charlotte H. Gotfredsen^d), Søren R. Jensen^d), and İhsan Çalış^b)


^a) Department of Pharmaceutical Management, Faculty of Pharmacy, Hacettepe University, TR-06100, Ankara (phone: +90-312-3051089; fax: +90-312-3114777; e-mail: funyal@hacettepe.edu.tr)

^b) Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR-06100 Ankara

^c) Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, TR-06100 Ankara ^d) Department of Chemistry, The Technical University of Denmark, Building 201, DK-2800 Lyngby

Two new iridoid glycosides, eriobioside (1) and lamerioside (2), were isolated from the aerial parts of *Lamium eriocephalum* subsp. *eriocephalum*, along with the two known compounds lamiide (3) and ipolamiide (4). Their structures were elucidated by spectroscopic methods (UV, 1D- and 2D-NMR) and by

Introduction. – The genus *Lamium* (Lamiaceae) is represented by 27 species in the flora of Turkey [1]. *Lamium album* and *L. maculatum* have been used in Anatolian folk medicine as tonics [2]. As a part of our ongoing phytochemical studies on the secondary metabolites of Turkish *Lamium* species [3], we have studied the iridoid glycosides of *L. eriocephalum* BENTHAM subsp. *eriocephalum*. Herein, we report two new iridoid glycosides, eriobioside (1) and lamerioside (2), from the title plant, together with two known iridoid glucosides, lamiide (3) and ipolamiide (4).

Results and Discussion. – The H₂O-soluble part of the crude MeOH extract of the aerial parts of *L. eriocephalum* was subjected to medium-pressure liquid chromatography (MPLC) on a C_{18} column, eluting with a H₂O/MeOH gradient to yield five main fractions. Further column-chromatographic separations on silica gel finally afforded the iridoid glycosides **1–4**.

mass spectrometry (HR-ESI-MS).

¹⁾ In memory of Kürşat Avcı (B. Sc.), 1972–2003.

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

Compound 1 was obtained as an optically active, amorphous powder. ESI-MS showed the $[M + Na]^+$ peak at m/z 591, corresponding to the molecular formula C₂₃H₃₆O₁₆. The UV spectrum showed an absorption maximum at 229 nm, indicating an α,β -unsaturated C=O moiety. Analysis of the ¹³C-NMR (DEPT) spectrum of 1 (Table 1) revealed the presence of 23 carbon signals, twelve of which were assigned to two hexose units. The remaining 11 resonances, along with the corresponding ¹H-NMR signals, were indicative of a C₁₀ iridoid skeleton bearing a MeOOC group at C(4). The ¹H-NMR spectrum of **1** (*Table 1*) exhibited signals due to an enol ether conjugated to a MeOOC group (δ (H) 7.43 (s, H–C(3)); 3.73 (s, MeOOC)), two CH₂ groups $(\delta(H) 2.26 (ddd, J = 13.5, 8.2, 5.1 Hz, H_a - C(6)); 2.09 (ddd, J = 14.3, 9.5, 7.9 Hz, H_a - C(6)); 2.09 (dddd, J = 14.3, 9.5, 7.9 Hz, H_a - C(6)); 2.09 (dddd, J =$ C(6)); 1.97 (*dd*, J = 12.2, 8.6 Hz, H_a-C(7)); 1.56 (*ddd*, J = 12.2, 6.9, 5.2 Hz, H_a-C(7)); C(7))), and a Me group at $\delta(H)$ 1.15 (s, Me(10)). The resonances at $\delta(H)$ 4.61 (d, J=7.9 Hz, H–C(1')) and 4.42 (d, J=7.8 Hz, H–C(1'')) were attributed to the two anomeric H-atoms of the hexose units. The corresponding ¹³C-NMR resonances were observed at $\delta(C)$ 99.7 and 105.1, respectively. The chemical shifts and coupling constants of the sugar signals indicated the presence of two β -glucopyranosyl (Glc) moieties.

The complete assignments of the remaining signals of **1** were made by 2D-NMR experiments (¹H,¹H-COSY, ¹H,¹³C-HMQC, HMBC) as well as by NOESY analysis. The ¹H-NMR signal at δ (H) 7.43 (*s*), assigned to H–C(3), showed that C(4) and C(5) were fully substituted. The assigned NMR data of **1** were almost identical to those of ipolamiide (**4**) [4], except for the presence of additional signals arising from a second Glc unit. The resonance for C(6') at δ (C) 69.9 was considerably shifted downfield ($\Delta\delta$ = 7 ppm), and C(5') was slightly shifted upfield (1 ppm) relative to the corresponding signals of ipolamiide (*Table 1*). Therefore, the second Glc unit was attached to the O-atom at C(6'). This was verified by an HMBC cross-peak between CH₂(6') and C(1''). Thus, the disaccharide moiety was identified as a 6'-O- β -glucopyranosyl- β -glucopyranosyl (=gentiobiosyl) unit. From these data, the structure of compound **1** was established as ipolamiide 6'-O- β -glucopyranoside, and named *eriobioside*²).

Compound **2** was obtained as an optically active, amorphous powder. The molecular formula $C_{17}H_{26}O_{12}$ was determined by LC/HR-ESI-MS, showing the $[M + \text{HCOO}]^-$ peak at m/z 467, in good agreement with 17 observed resonances in the ¹³C-NMR spectrum (*Table 2*). The UV spectrum exhibited a maximum at 229 nm, suggesting a conjugated enol ether.

The ¹H-NMR spectrum of **2** (*Table 2*) displayed characteristic signals for a C₁₀ iridoid, bearing an MeOOC group at C(4) (δ (H) 7.43 (s, H–C(3); 3.75 (s, MeOOC)), a CH₂ group (δ (H) 2.54 (dd, J=14.8, 8.2 Hz, H_a–C(6)); 1.81 (dd, J=14.7, 11.2 Hz, H_β–C(6))), an oxymethine (δ (H) 4.18 (dd, J=11.1, 8.2 Hz, H–C(7))), and a Me group (δ (H) 1.03 (s, Me(10))). The anomeric sugar resonance at δ (H) 4.61 (d, J=7.9 Hz) and the signals at δ (H) 3.19–3.90, together with the corresponding ¹³C-NMR resonances, indicated the presence of a β -Glc unit. Also, the ¹H- and ¹³C-NMR data of **2** were very similar to those of lamiide (**3**) [5] (*Table 2*). However, both the chemical shifts and coupling constants of CH₂(6) and H–C(7) of **2** suggested that the 7-OH

²) For systematic names, see Exper. Part.

Atom	1 ^a)	4 [4] ^b)			
	δ(H)	$\delta(C)$	HMBC (H \rightarrow C)	$\delta(H)$	$\delta(C)$
H-C(1)	5.80 (s)	94.5	C(1'), C(3), C(5), C(8)	5.81 (s)	94.1
H-C(3)	7.43(s)	152.7	C(1), C(4), C(5), C(11)	7.44 (s)	152.6
C(4)		115.3			115.1
C(5)		71.7			71.6
$CH_{2}(6)$	2.26 (<i>ddd</i> , <i>J</i> = 13.5, 8.2, 5.2),	38.9	C(5), C(7), C(8)	2.26 (<i>m</i>),	38.8
	2.09 (ddd, J = 14.3, 9.5, 7.9)			1.92 (<i>m</i>)	
H-C(7)	1.97 (dd, J = 12.2, 8.6),	40.5	C(5), C(6), C(8)	2.10 (<i>m</i>),	40.3
	1.56 (ddd, J = 12.2, 6.9, 5.2)			1.59 (<i>m</i>)	
C(8)		79.0			78.9
H–C(9)	2.50(s)	61.8	C(1), C(4), C(5), C(8), C(10)	2.48 (s)	61.6
Me(10)	1.15(s)	23.4	C(7), C(8), C(9)	1.15(s)	23.2
C(11)		168.1		.,	168.0
MeO	3.73 (s)	51.7	C(11)	3.73 (s)	51.7
H–C(1′)	4.61 (d, J = 7.9)	99.7	C(1)	4.58 (d, J = 7.9)	99.5
H–C(2')	3.19(t, J = 8.0)	74.4	C(1')	3.20 (dd, J = 7.9, 9.5)	74.3
H–C(3')	3.38*	77.9		3.46(t, J=9.2)	77.3
H-C(4')	3.31*	71.8		3.42(t, J=9.0)	71.4
H–C(5')	3.51*	77.4		3.50 (m)	78.3
CH ₂ (6')	4.20 (dd, J = 11.8, 1.8),	69.9	C(1'')	3.90 (dd, J = 12.0, 1.8),	62.8
/	3.80 (dd, J = 11.8, 6.2)			3.71 (dd, J = 12.0, 5.8)	
H–C(1")	4.42 (d, J=7.8)	105.1	C(6')		
H–C(2")	3.21(t, J = 8.0)	74.4	C(1")		
H-C(3")		77.5			
H-C(4'')	3.31*	71.9			
H–C(5")		78.0			
CH ₂ (6")	3.88 (d, J = 11.8),	62.8			
~ /	3.67 (dd, J = 11.8, 4.1)				
^a) At 400	and 100 MHz, resp. b) At 50	0 and	125 MHz, resp.		

Table 1. ¹*H-* and ¹³*C-NMR* Data of **1** and **4**, and *HMBC* Correlations for **1**. In CD₃OD; δ in ppm, *J* in Hz. Asterisks (*) mark overlapping signals. Arbitrary atom numbering.

group was *a*-oriented in **2**, as in daunoside [6]. To corroborate the relative configuration of the 7-OH function, a 2D-NOESY experiment was performed. Correlations between H_{β} -C(6)/H-C(7) and H-C(7)/H-C(9) established the β -orientation of H_{β} -C(6), H-C(7), and H-C(9). Therefore, the 7-OH group had, indeed, to be in *a*position. From these data, the structure of compound **2** was identified as 7-epilamiide, and named lamerioside.

The two known iridoid glucosides, lamiide (3) [5] and ipolamiide (4) [4], were identified by comparing their 1D- and 2D-NMR spectra as well as their ESI-MS data with those published in the literature.

Iridoid monoglucosides with MeOOC or Me groups in 4-position are considered as chemotaxonomic markers for *Lamium* species [6-9]. Eriobioside (1), with a gentiobiosyl moiety, is the first iridoid diglycoside isolated from this genus. Also, 7-epiiridoids show a very restricted distribution in the plant kingdom [6][7], lamerioside (2) being the first such representative within the genus *Lamium*.

	2 ^a)	3 [5] ^b)			
	δ(H)	$\delta(C)$	HMBC (H \rightarrow C)	δ(H)	$\delta(C)$
H–C(1)	5.83 (s)	93.5	C(3), C(5), C(1')	5.82 (s)	94.6
H-C(3)	7.43 (s)	152.1	C(1), C(4), C(5), C(11)	7.43(s)	152.5
C(4)		116.0			115.5
C(5)		66.3			69.3
CH ₂ (6)	2.54 (dd, J = 14.8, 8.2),	47.0	C(5), C(7), C(8)	2.36 (dd, J = 14.9, 5.2),	46.8
	1.81 (dd, J = 14.8, 11.2)			2.25 (dd, J = 14.9, 3.4)	
H–C(7)	4.18 (dd, J = 11.1, 8.2)	78.4	C(8), C(10)	3.52 (dd, J = 4.9, 3.4)	77.9
C(8)		79.8			79.2
H–C(9)	2.50(s)	59.0	C(1), C(4), C(10)	2.78(s)	58.2
Me(10)	1.03 (s)	15.9	C(7), C(8), C(9)	1.09(s)	21.3
C(11)		168.0		.,	168.1
MeO	3.75 (s)	51.7	C(11)	3.73(s)	51.7
H–C(1′)	4.61 (d, J = 7.9)	99.6	C(1)	4.59(d, J=7.9)	99.7
H-C(2')	3.19(t, J=9.1)	74.5	C(1')	3.18 (dd, J = 9.2, 7.9)	74.5
H-C(3')	3.38(t, J=8.9)	77.5		3.38(t, J=8.5)	77.5
H-C(4')	3.33(t, J=8.9)	71.8		3.27 (dd, J = 9.5, 8.8)	71.7
H–C(5′)	3.36 (ddd, J = 8.9, 5.8, 2.0)	77.9		3.33 (m)	78.5
CH ₂ (6')	3.90 (dd, J = 11.9, 2.0),	62.9		3.89 (dd, J = 11.9, 2.1),	62.8
	3.67 (dd, J = 11.9, 5.8)			3.67 (dd, J = 11.9, 6.0)	

Table 2. ¹*H*- and ¹³*C*-*NMR* Data of **2** and **3**, and *HMBC* Correlations for **2**. In CD₃OD; δ in ppm, *J* in Hz. Arbitrary atom numbering.

We wish to thank Dr. *Özgür Özsar* (Department of Chemistry, Faculty of Science, Hacettepe University, Ankara) for recording NMR spectra and Dr. *Kristian Fog Nielsen* (BioCentrum, Technical University of Denmark) for recording the LC/HR-ESI mass spectrum of **2**. This study was supported by Hacettepe University (0302301011).

Experimental Part

General. Medium-pressure liquid chromatography (MPLC): Büchi glass column (i.d. 3×24 cm) packed with LiChroprep RP-18 (40–63 µm; Merck), with Büchi-681 chromatography pump. Column chromatography (CC): silica gel 60 (0.063–0.200 mm; Merck). TLC: precoated Kieselgel 60 F₂₅₄ (Merck) aluminum plates, elution with CHCl₃/MeOH/H₂O mixtures; visualization by spraying with 1% vanillin in conc. H₂SO₄, followed by heating at 105° for 1–2 min. UV Spectra: M-Quant Biomolecular spectrophotometer; λ_{max} (log ε) in nm. Optical rotations: Rudolph Autopol-IV Automatic polarimeter. NMR Spectra: Bruker Avance-400 spectrometer; at 400 (¹H) and 100 MHz (¹³C); δ in ppm rel. to Me₄Si, J in Hz. ESI-MS: Waters ZQ mass spectrometer. LC/HR-ESI-MS: Agilent HP-1100 liquid chromatograph equipped with a BDS-C-18 reverse-phase column coupled to a Micromass TOF mass spectrometer; in m/z.

Plant Material. The aerial parts of *Lamium eriocephalum* BENTHAM subsp. *eriocephalum* were collected from Niğde, Aladağlar, Southeast Anatolia, in June 2002, and identified by Prof. Dr. *Hayri Duman* (Department of Biology, Faculty of Science, Gazi University, Ankara). A voucher specimen (HUEF 02046) was deposited at the Herbarium of the Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.

Extraction and Isolation. The air-dried, powdered aerial parts of *L. eriocephalum* (100 g) were extracted with MeOH (4×1.0 l, 5 h each) at 40° , and then filtered. The combined MeOH extracts

were evaporated to dryness under reduced pressure. The crude extract (12 g) was taken up in H₂O (100 ml), and the water-soluble portion was successively extracted with $CH_2Cl_2(4 \times 100 \text{ ml})$ and $BuOH (4 \times 100 \text{ ml})$. The remaining aq. phase was evaporated to afford 5.2 g of crude remainder. An aliquot of the aq. extract (2 g) was subjected to RP-MPLC (*LiChroprep RP-18*; MeOH/H₂O 0 \rightarrow 100% in 25% steps, 250 ml each): five main fractions (*Fr. A – Fr. E*): *Fr. B* afforded **2** (18 mg). *Fr. C* yielded **3** (7 mg). *Fr. D* (200 mg) was subjected to CC (20 g SiO₂; AcOEt/MeOH/H₂O 100:5:2, 100:10:5, and 100:17:13, 300 ml each) to afford **1** (10 mg) and **4** (21 mg).

Eriobioside (= *Methyl* (1S*,4*a*R*,7S*)-1-[(6-O- β -D-*Glucopyranosyl-\beta*-D-*glucopyranosyl)oxy*]-1,4*a*,5, 6,7,7*a*-hexahydro-4*a*,7-dihydroxy-7-methylcyclopenta[c]pyran-4-carboxylate; **1**). Amorphous, colorless powder. [a]_D²⁰ = -70 (c = 0.1, MeOH). UV (MeOH): 229 (3.30). ¹H- and ¹³C-NMR: see *Table 1*. ESI-MS: 591 ([M+Na]⁺). HR-ESI-MS: 591.1923 ([M+Na]⁺, C₂₃H₃₆NaO₁₆⁺; calc. 591.1901).

Lamerioside (= Methyl (1S*,4aR*,6R*,7R*)-1-(β -D-Glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-4a,6,7-trihydroxy-7-methylcyclopenta[c]pyran-4-carboxylate; **2**). Amorphous, colorless powder. [α]_D²⁰ = -170 (c=0.1, MeOH). UV (MeOH): 229 (3.50). ¹H- and ¹³C-NMR: see Table 2. ESI-MS (pos.): 445 ([M+Na]⁺, C₁₇H₂₆NaO₁₂⁺). HR-ESI-MS (neg.): 467.1395 ([M+HCOO]⁻, C₁₈H₂₇O₁₄⁻; 467.1401).

REFERENCES

- R. R. Mill, in 'Flora of Turkey and the East Aegean Islands', Ed. P. H. Davis, University Press, Edinburgh, 1982, Vol. 7, pp. 126–148.
- [2] T. Baytop, 'Therapy with Medicinal Plants in Turkey: Past and Present', Nobel Tip Kitabevleri, İstanbul, 1999, p. 163.
- [3] T. Ersöz, D. Kaya, F. N. Yalçın, C. Kazaz, E. Palaska, C. H. Gotfredsen, S. R. Jensen, İ. Çalış, Turk. J. Chem., submitted.
- [4] T. Ersöz, Ü. Ş. Harput, İ. Çalış, Turk. J. Chem. 2002, 26, 1.
- [5] A. M. Assaad, N. El-Sebakhy, M. F. I. Lahloub, S. A. A. El-Khayat, Alexandria J. Pharm. Sci. 1992, 6, 183.
- [6] C. A. Boros, F. R. Stermitz, J. Nat. Prod. 1990, 53, 1055.
- [7] L. J. El-Naggar, J. L. Beal, J. Nat. Prod. 1980, 43, 649.
- [8] M. Wink, M. Kaufmann, Bot. Acta 1996, 109, 139.
- [9] K. Alipieva, R. Taskova, S. R. Jensen, N. Handjieva, *Biochem. Syst. Ecol.* 2006, 34, 88; K. Alipieva, T. Kokubun, R. Taskova, L. Evstatieva, N. Handjieva, *Biochem. Syst. Ecol.* 2007, 35, 17.

Received October 25, 2006